Novel folded protein domains generated by combinatorial shuffling of polypeptide segments.

نویسندگان

  • L Riechmann
  • G Winter
چکیده

It has been proposed that the architecture of protein domains has evolved by the combinatorial assembly and/or exchange of smaller polypeptide segments. To investigate this proposal, we fused DNA encoding the N-terminal half of a beta-barrel domain (from cold shock protein CspA) with fragmented genomic Escherichia coli DNA and cloned the repertoire of chimeric polypeptides for display on filamentous bacteriophage. Phage displaying folded polypeptides were selected by proteolysis; in most cases the protease-resistant chimeric polypeptides comprised genomic segments in their natural reading frames. Although the genomic segments appeared to have no sequence homologies with CspA, one of the originating proteins had the same fold as CspA, but another had a different fold. Four of the chimeric proteins were expressed as soluble polypeptides; they formed monomers and exhibited cooperative unfolding. Indeed, one of the chimeric proteins contained a set of very slowly exchanging amides and proved more stable than CspA itself. These results indicate that native-like proteins can be generated directly by combinatorial segment assembly from nonhomologous proteins, with implications for theories of the evolution of new protein folds, as well as providing a means of creating novel domains and architectures in vitro.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A segment of cold shock protein directs the folding of a combinatorial protein.

It has been suggested that protein domains evolved by the non-homologous recombination of building blocks of subdomain size. In earlier work we attempted to recapitulate domain evolution in vitro. We took a polypeptide segment comprising three beta-strands in the monomeric, five-stranded beta-barrel cold shock protein (CspA) of Escherichia coli as a building block. This segment corresponds to a...

متن کامل

O-5: Identification of Novel ImmunodominantEpididymal Sperm Proteins Using CombinatorialApproach

Background: Alteration in the protein signatures of functionally immature testicular spermatozoa occurs during their journey through the epididymis. This leads to acquisition of sperm domain specific functions essential for successful fertilization. Epididymal sperm proteins are preferred targets for immunocontraception as well as in elucidating the causes of infertility. The Background of the ...

متن کامل

De novo proteins from binary-patterned combinatorial libraries.

Combinatorial libraries of well-folded de novo proteins can provide a rich source of reagents for the isolation of novel molecules for biotechnology and medicine. To produce libraries containing an abundance of well-folded sequences, we have developed a method that incorporates both rational design and combinatorial diversity. Our method specifies the "binary patterning" of polar and nonpolar a...

متن کامل

Titin Extensibility In Situ: Entropic Elasticity of Permanently Folded and Permanently Unfolded Molecular Segments

Titin (also known as connectin) is a giant protein that spans half of the striated muscle sarcomere. In the I-band titin extends as the sarcomere is stretched, developing what is known as passive force. The I-band region of titin contains tandem Ig segments (consisting of serially linked immunoglobulin-like domains) with the unique PEVK segment in between (Labeit, S., and B. Kolmerer. 1995. Sci...

متن کامل

In vivo selection of combinatorial libraries and designed affinity maturation of polydactyl zinc finger transcription factors for ICAM-1 provides new insights into gene regulation.

Zinc finger DNA-binding domains can be combined to create new proteins of desired DNA-binding specificity. By shuffling our repertoire of modified zinc finger domains to create randomly generated polydactyl zinc finger proteins with transcriptional regulatory domains, we developed large combinatorial libraries of zinc finger transcription factors (TFZFs). Millions of TFZFs can then be simultane...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 18  شماره 

صفحات  -

تاریخ انتشار 2000